首页/ 其他 /环氧树脂128/
收藏商品
分享商品
环氧树脂128
商品别名:
很抱歉,该商品已下架!
  • 商品详情
品牌:其他
cas:--
分子式:--
产地:湖南
1、第二代环氧建筑结构胶的组成:
以粘钢胶为例配方如下(供参考)
环氧树脂(1) CYD-128 70 份
环氧树脂(2) E-44 30 份
增韧剂 奇士增韧剂 15 份
偶联剂 KH-550 1.5 份
固化剂(1) 聚酰胺651或300# 35份
固化剂(2) FZ-202 15 份
填料 硅微粉(400目) 200份
固化条件及性能指标:
常温(23±2℃)七天固化或常温4小时后再于60℃二小时测试,其基本力学指标如下:表(1)
表1 基本力学指标
项 目
检测条件
标准值/MPa
实测结果/MPa
拉伸剪切
钢片/钢片
≥18
27.8
垂直拉伸
钢圆柱/钢圆柱
≥33
39.5
胶体拉伸强度
胶体哑铃状
37.7
胶体抗压强度
园柱样
77.3
钢/混凝土抗剪强度
 
5.01混凝土破坏
钢/混凝土抗拉强度
 
3.8混凝土破坏
混凝土/混凝土抗剪强度
见附录1
4.97混凝土破坏
耐温性能(温度/抗剪)
恒温8h后立即进行试验
GB7124-86
60℃/27.0,80℃/22.0
附录1 混凝土-混凝土粘接抗剪强度检测结果
标准值/MPa
抗剪强度/MPa
平均值/MPa
破坏特征
≥4.65
≥4.65
≥4.65
≥4.65
≥4.65
4.95
 
混凝土试件破坏
5.03
4.97
4.99
5.01
 
4.88
 
2、特征:
从表(1)中测试的结果看,其主要力学性能指标都超过了“CECS25:90”部颁规范的要求。和其它类型的环氧建筑胶相比,也处于领先水平,这也就是第二代环氧建筑结构胶所具有的优势。
第二代环氧建筑结构胶配方设计原理及分析
为什么第二代环氧建筑结构胶具有如此优异的性能呢?我们的配方设计依据和原理是以什么理论为基础呢?首先我们来看一看以上述粘钢胶的配方为例来分析一下。粗一看来,此配方和其它环氧建筑结构胶配方大同小异,都是以双 A酚环氧树脂为主料,同样也加了偶联剂、固化剂、增韧剂等一些原料。确实第二代环氧建筑结构胶的配方体系和第一代及其它环氧建筑结构胶相类似。但是,如果仔细研究一下,就发现有几个重大的区别和差异。其一,本配方是两种不同分子量的低分量环氧树脂组成的。目的是减少收缩、防止结晶、降低粘度。我们知道E-44环氧树脂的粘接强度高于E-51(或CYD-128),但它的粘度大于E-51,尤其在冬天施工不方便。其次两种不同分子量的树脂混在一起,结晶的可能性减少。如果单独用CYD-128则冬季非常容易结晶。混合树脂既有合适的粘度,也减少了收缩,提高了强度,防止了结晶。所以效果非常理想。其二是增韧剂没有采用第一代或其它类型的环氧建筑结构胶中通常配方采用的聚硫橡胶丁腈橡胶作增韧剂。而是采用清华大学奇士公司根据海岛结构原理为理论基础最新生产出的奇士增韧剂。根据一般增韧理论,橡胶加入环氧固化体系时会产生弹力以吸收固化时的收缩应力,从而达到提高粘接强度的作用,但是橡胶(尤其是聚硫或丁腈橡胶)在环氧树脂固化体系中存在着相容性差,粘度大,分散困难的毛病。制备这些建筑结构胶对设备要求高,且分散均匀困难。尤其是在施工过程中由于橡胶的粘滞性,胶层厚薄不均,施工吃力,耗胶量大,粘接强度一致性差。奇士增韧剂是一类由不同柔性链段嵌段而成的带有活性基团的液体聚合物,该增韧剂是低粘度液体与环氧树脂及固化剂相容性好,且没有聚硫橡胶或丁腈橡胶的粘滞性,故施工顺畅、胶层薄而均匀,用胶量也比一般橡胶型增韧剂的建筑结构胶少用近四分之一,既节约了成本,又提高了性能。奇士增韧剂的增韧原理就是在未固化前,它与环氧树脂及固化剂是均相存在于体系中,而一旦固化开始此增韧剂便开始分相均匀分布在固化体系中形成海岛结构状。更明显的表现现象是如果不加填料,在开始固化前,此环氧固化体系为均匀透明液状物,而固化过程开始混浊最后成乳白色或棕黄色不透明固体状。那么海岛结构的胶粘剂为什么能提高强度呢?根据粘接理论,胶粘剂在固化过程中会产生大量反应热以便开环过程连续不断进行下去,在产生粘接力的同时,也会在体系中产生大量收缩应力,如果粘接力大于收缩应力,则会产生粘接强度,相反,收缩应力大于粘接力,则固化体系的粘接强度几乎为零,或是产生开裂现象。因为奇士增韧剂在固化完成后形成小的海岛结构,均匀的分布在体系中,它可以大量吸收固化时产生的收缩应力,使收缩应力降到最低限度。根据粘接强度=粘接力+收缩应力(负值)公式可以看出,收缩应力越大,粘接强度越小,反之,收缩应力越小,粘接强度就越大。同时,在测试粘接强度时,由于海岛结构的存在,它抵御外力的作用也非常强大,具有坚而韧的特性。在这双重性质的作用下,用具有海岛结构的奇士增韧剂大幅度提高粘接强度也就不足为奇了,这是第二代环氧建筑结构胶的核心技术。其三,在第二代环氧建筑结构胶中的固化体系也是非常重要的核心技术,此固化体系与众不同的是采用了聚酰胺(或改性聚酰胺)与脂环族固化剂复合的固化体系。我们知道,聚酰胺作环氧固化剂具有很多优点,如大配比量、低放热峰、配方范围广、刚性好、强度韧度高等,但是它也有一些致命的缺点:如粘度大,低于15℃就不易固化,速度太慢,室温固化度低(不大于60%),耐温性差(高于60℃强度急剧下降)。尤其是在冬天,单用聚酰胺几乎和环氧树脂不反应,这样就极大地阻碍了建筑结构胶的使用范围。目前市面上流行用593改性脂肪胺与聚酰胺配套使用。593固化剂具有粘度低,放热峰高,固化速度快,稍低的气温也能固化的优点,不过由于这类固化剂价格昂贵且固化物脆性大,增加了成本,强度也不甚理想。笔者经过多年的研究发现脂环族固化剂和聚酰胺配合后,性能提高很多且价格低廉,其综合性能均优于593固化剂与聚酰胺的组合。此类脂环族固化剂就是由河南省郑州天泽公司生产饲料添加剂的副产品改性而成。这类名叫TAC的固化剂据分析是甲基环戊二胺和环己二胺为主体组成的脂环族多胺。由于TAC中还含有其它未知成份。直接用它作固化剂效果非常差,缺点多多,如配比严格,易变色,脆性大,强度低。有鉴于此,笔者对TAC进行了改性,保留其粘度低,活性强,发热平稳持久的优点,降低了胺值,增加了韧性。这种名为FZ-201、202的固化剂就是经过改性的TAC制备而成。它和聚酰胺可以取长补短,既降低了体系的粘度,又保持其持久的发热量促进聚酰胺固化,又能多添加填料,降低成本而性能不下降,提高了耐热性,还可以在0℃以上环境中应用,大大扩展了建筑结构胶的应用范围。这种固化剂除颜色较593深一些外,其它性能均超过593固化剂且价格是其三分之二,这对建筑结构胶厂无疑是降低成本的好产品。
基于以上在环氧树脂搭配、增韧剂的新理论及组合固化剂的固化体系上与第一代或其它环氧建筑结构胶相比除存在理论依据不同外,选用的材料也是最近几年才开发出来的。所以这种固化-增韧体系是目前性能全面、质量稳定、价格低廉、应用面广的一种新型环氧建筑结构胶。
第二代环氧建筑结构胶的配方设计实例
1、植筋胶的配方设计:
根据要求此植筋胶需要在常温下快速固化,且用于混凝土横梁上植筋,其主要性能要求固化三天后(一般设计要求是七天后测量),其钢筋拉拔强度为钢筋拔断。
设计要点为①常温快固化。②横梁钻孔植筋,胶易流出,③钢筋拉断。
首先确定固化增韧体系为聚硫醇-多胺加奇士增韧剂的固化增韧体系,树脂一般双酚A环氧树脂, 偶联剂既可增加粘接强度又能耐老化,故也必须加入。填料选用100目及400目硅微粉。为防止垂流,适当添加一些触变剂如进口气相二氧化硅等组成如下配方:
环氧树脂 E—51 100份
增韧剂 奇士BE  20份
偶联化填料 100目/400目3:1级配 150份
触变剂 进口气相二氧化硅   6份
固化剂 硫醇-多胺F2-203 30 份
将此配方按A、B两组份制备,A:B=3:1(质量比)。分装(制备过程略)。
使用工艺:现场按A:B=3:1配制,每次配胶量不超过1公斤。搅拌均匀后,注射到已钻好的孔洞中去。然后将钢筋插入深度为钢筋直径的15倍,来回搅动数次再定位,三小时即可初固,八小时就有80%的拉拔强度。三天后测试,全部为钢筋拔断。(注:钢筋直径不大于20毫米)。
2、粘钢灌注胶的配方设计:
此为三重连接结构粘钢灌注胶,系在立柱周围采用钢板焊接围成。要求胶粘剂粘度低,可灌性好,且施工期要长一些(约三小时内仍可施工)粘接剪切强度(钢/钢要大于18MPa)。
配方的要点为①粘变低,可灌性好;②面积大,施工期要长一些;③强度指标较高。
首先确定用粘度较低的E-51环氧树脂及活性稀释剂作为甲组分。乙组分选用的增韧固化体系为改性聚酰胺固化剂如江西远大公司开发的建筑结构胶专用固化剂。它的粘变为2000厘泊,使用期长且强度高。
其参考配方如下:
环氧树脂 E—51 100份
活性稀释剂 EPG660 15份
填料 活性硅微粉400目 45份
增韧剂 奇士BE 20 份
固化剂 50份
硅微粉 活性硅微粉400目 10份
按A:B=2:1(质量比)
配制后的总粘度约为2000-3000厘泊左右,可灌性良好,且配制5公斤胶料可使用期大于2小时。七天固化后,测试样片(钢/钢)的剪切强度为23.6MPa。
3、常温固化耐高温结构胶
某冶金企业高炉旁立柱长期受高温影响。混凝土脱落,使露出的钢筋生锈,需要常温固化,但要耐高温(150℃左右)。
此胶的配方要点就是要常温下操作固化,但要在高温环境下使用,且粘接强度要高,因此在树脂和固化剂的选择上要重点考虑。
一般的环氧树脂是不能耐高温的,故选择酚醛环氧树脂和双酚A环氧树脂并用,固化剂要选用能常温固化又耐高温的芳香胺,另外还要添加耐热填料,这样就可以满足上述技术要求。
买家中心
我的订单
购物车
我的收藏
浏览记录